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a b s t r a c t

This paper deals with the modelling and numerical simulation of isothermal bubbly flows with multi-size
bubbles. The study of isothermal bubbly flows without phase change is a first step towards the more gen-
eral study of boiling bubbly flows. Here, we are interested in taking into account the features of such iso-
thermal flow associated to the multiple sizes of the different bubbles simultaneously present inside the
flow. With this aim, several approaches have been developed. In this paper, two of these approaches are
described and their results are compared to experimental data, as well as to those of an older approach
assuming a single average size of bubbles. These two approaches are (i) the moment density approach for
which two different expressions for the bubble diameter distribution function are proposed and (ii) the
multi-field approach. All the models are implemented into the NEPTUNE_CFD code and are compared to a
test performed on the MTLOOP facility. These comparisons show their respective merits and shortcom-
ings in their available state of development.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

This paper deals with the modelling and the numerical simula-
tion of isothermal multi-size bubbly flows. Several physical phenom-
ena determine the bubble size and shape, which in turn determines
the evolution of the flow structure (void fraction distribution,
mean liquid and gas velocity profiles, turbulence intensity in the li-
quid phase. . .). The phenomena responsible for the changes in the
bubble size distribution are the bubbles coalescence and break-up,
the gas compressibility, the phase change and the bubbles defor-
mations. Here, we will assume that the bubbles remain spherical,
for the sake of simplicity. However, when the bubbles distort (i.e.
they do not retain their spherical shape), the interface becomes
anisotropic and a full tensorial treatment should be adopted (Doi
and Ohta, 1991; Wetzel and Tucker, 1999; Lhuillier, 2004a,b;
Morel, 2007). This general approach is very complicated, and only
few closures are available in the literature in very restricted cases.
Therefore, for this first study, we assume that the bubbles remain
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spherical. In fact, in all the approaches that will be presented here,
the bubbles are supposed to be multi-dispersed in size but not in
shape. The general study of bubbly flows with bubbles multi-dis-
persed in size and in shape could be envisaged in a future work.

It is also assumed that there is no phase change, therefore only
the first three types of physical phenomena (coalescence, break-up
and gas compressibility) will influence the bubble diameter. In-
deed, we consider isothermal flows without phase change as a first
stage with the aim of evaluating the different approaches for the
prediction of bubbly flows with multi-size bubbles, and that,
although some of these methods have already been tested in
boiling bubbly flow studies (Seiler and Ruyer, 2008; Morel and
Laviéville, 2008).

The simultaneous existence of several bubble sizes in a bubbly
flow has direct consequences on the velocities. In a quiescent
liquid, it is observed that the bubble rising velocity generally
depends on the bubble size: the larger the bubble, the greater
the bubble rising velocity. If we consider a more complex flow,
with a vertical liquid flow rate, and define the bubble relative
velocity as the difference between the bubble velocity and the
velocity of the surrounding liquid, this relative velocity depends
on the bubble size in the same manner. This difference between
the relative velocities of bubbles having different sizes is known
as a possible source of bubble collisions and coalescences (Prince
and Blanch, 1990). Another important aspect for upward bubbly
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flows in vertical pipes is that the small bubbles move laterally to-
wards the pipe wall, and the large bubbles (above a critical size)
move laterally in the opposite sense, i.e. towards the pipe axis.
These various behaviours have been observed experimentally by
many authors. Tomiyama (1998) relates this behaviour to the
change of sign of the lift force, which is responsible for the lateral
bubble migration, and proposes an empirical correlation to express
the lift coefficient as a function of the bubble diameter (via the
bubble Reynolds and Eotvos numbers). These two phenomena
illustrate also the fact that a bubbly flow with multi-size bubbles
is generally characterized also by bubble multiple velocities. In
some approaches, like the multi-field approach presented in
Section 6, this multi-velocity aspect can be taken into account in
a very natural way but is tacked with more difficulties by other
approaches, like with the moment density approaches described
in Sections 4 and 5.

This paper is organized as follows. In Section 2, we briefly recall
the two-fluid model in its simplified version for isothermal flows
without phase change and the evolution equations for the different
useful moment densities of the bubble diameter distribution func-
tion. All the presented approaches here can be derived from the
equations established in Section 2, except for the multi-field ap-
proach, whose bases will be detailed in Section 6. Section 3 is de-
voted to the classical single-size approach, in which an interfacial
area concentration (IAC) evolution equation is included. This IAC
is combined with the bubble void fraction to determine the bubble
Sauter mean diameter (SMD) which is the single diameter consid-
ered in this approach, called besides ‘‘single size”. Two different ap-
proaches, namely the moment’s density approach and the multi-field
one, are frequently considered for the CFD simulations of bubbly
flows with multiple bubble sizes. Two Sections 4 and 5 are devoted
to various versions of the moment’s density approach, and Section
6 is devoted to the multi-field approach. Simulations of a MTLOOP
experiment have allowed comparing results of the various ap-
proaches and deducing their merits and shortcomings. This exper-
iment will be described in Section 7. One experimental test is
calculated with these four different approaches implemented into
the NEPTUNE_CFD code. The results of the comparisons are pre-
sented in Section 8. In Section 9, some conclusions are drawn about
the present status of the different methods and some perspectives
are given for future work.

2. Two-fluid model and geometrical balance equations

In this paper, we deal with adiabatic and isothermal bubbly
flows without phase change. In this situation, the mass and
momentum balance equations of the two-fluid model read (Ishii
and Hibiki, 2006):

@akqk
@t þr:ðakqkVkÞ ¼ 0 k ¼ L;G

@akqkVk
@t þr:ðakqkVkVkÞ ¼ �akrpk þMk þ akqkg

þr:½akðsk þ sT
kÞ� k ¼ L;G

ð1Þ

where ak is the local time-fraction of presence of phase k, qk its
averaged density, Vk its averaged velocity and pk the bulk-averaged
pressure for phase k. The vector g is the gravity acceleration, sk and
sT

k are the averaged viscous stress tensor and the turbulent ‘‘Rey-
nolds” stress tensor, respectively, and the vector Mk is the averaged
interfacial transfer of momentum. The phase index k takes the val-
ues L for the liquid phase and G for the gas phase. Eqs. (1) have been
obtained by Ishii and Hibiki (2006) by means of a time-averaging,
but very similar equations can be obtained by means of ensemble
averaging (e.g. Drew and Passman, 1999). The difference between
the interfacial-averaged pressure for phase k pki and the bulk-aver-
aged pressure pk has been neglected. We will also neglect the differ-
ence between the two bulk-averaged pressures in the two phases,
therefore making the approximation pL = pG = p.

Making this approximation of a common pressure for the two
phases, the closure issue of the system of equations (1) lies in
the averaged viscous stress tensors for the two phases, the
Reynolds stress tensors for the two phases and the interfacial
momentum transfers. Here we will describe only the closure of this
last term (see also Section 8). If we neglect the averaged effects of
the interfacial tension, the averaged interfacial momentum balance
reduces to (Ishii and Hibiki, 2006):X
k¼L;G

Mk ¼ 0 ð2Þ

Therefore it is sufficient to express the gas (or liquid) interfacial
momentum transfer term, the liquid (or gas) interfacial momen-
tum transfer being deduced from the action and reaction principle,
in the context of the assumptions mentioned above. In bubbly flow
studies, the interfacial momentum transfer term Mk is often
decomposed into several averaged forces, namely a drag force, an
added mass force, a lift force, a turbulent dispersion force and
sometimes a wall force. The averaged expressions of these forces
can be obtained approximately by averaging classical expressions
for the forces exerted by the liquid on a single spherical bubble
(e.g. Morel et al., 2004). These different forces involve the bubble
diameter, therefore their averaged counterparts involve some geo-
metrical moments of the bubble diameter distribution function,
like the void fraction, the IAC and some averaged bubble diameters.
It is therefore necessary to determine these geometrical moments
in order to close the interfacial momentum transfer term. It is
worthwhile to note that, in more general boiling bubbly flows
involving phase change, the IAC or other geometrical variables also
strongly influence the heat and mass interfacial transfers, hence
the great importance given to their correct modelling.

As the bubbles remain spherical, the geometry of the bubbles
population can be completely described by means of a distribution
function f(n;x,t) where n is a parameter characteristic of the bubble
size, such as its diameter, its interfacial area or its volume. The
bubble distribution function f(n;x,t) is defined such that
f(n;x,t)dnd3x is the probable number of bubbles having a size
parameter between n and n + dn into the volume element d3x
around the point x at time t. Here we choose the bubble diameter
d being the parameter n. The mean geometry of the bubble popu-
lation can also be derived from the statistical moment densities
of the distribution function. The pth-order moment density of the
diameter distribution function is defined by:

Spðx; tÞ ¼̂
Z

dpf ðd; x; tÞdd ð3Þ

We can construct an infinite number of mean diameters dpq by
using an infinite number of moment densities, through the defini-
tion relation:

dpq¼̂
Sp

Sq

� � 1
p�q

ð4Þ

The first four moment densities are related, under some
assumptions regarding their spatial variation, to very useful quan-
tities for the study of bubbly flows with spherical bubbles:

n ¼̂ S0; d10 ¼̂ S1=n; ai ¼̂ pS2; a ¼̂ pS3=6 ð5Þ

where n(x,t) is the bubble number density, d10(x,t) is the mean bub-
ble diameter (mathematical expectation), ai (x,t) is the interfacial
area concentration (IAC) and a(x,t) is the void fraction (averaged
volumetric fraction of the gas phase). Three other important mean
diameters are often used:
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d20 ¼
S2

S0

� �1
2

¼
ffiffiffiffiffiffiffi
ai

pn

r
; d30 ¼

S3

S0

� �1
3

¼ 6a
pn

� �1
3

; d32 ¼
S3

S2
¼ 6a

ai

ð6Þ

The diameters d20 and d30 are called the mean surface diameter
and the mean volume diameter, respectively (Oesterlé, 2006) and
the last one, d32, is the so-called Sauter mean diameter. In the
‘‘single-size” bubble approach, the Sauter mean bubble diameter
is often used, because it depends directly on the void fraction,
which is obtained as part of the solution of the system (1), and
on the IAC which is obtained from an additional balance equation.

It can be shown, in a very general manner, that the bubble
diameter distribution function f(d;x,t) obeys to a Liouville–
Boltzmann type equation (Hulburt and Katz, 1964; Achard, 1978):

@f
@t
þr:ðf vðd; x; tÞÞ þ @fGðd; x; tÞ

@d
¼ Bþðd; x; tÞ � B�ðd; x; tÞ þ Cþðd; x; tÞ � C�ðd; x; tÞ ð7Þ

where vðd; x; tÞ is the velocity of a bubble having a diameter d,
Gðd; x; tÞ is the bubble growth velocity of the same bubble measured
along its trajectory, and B+, B�, C+ and C� are bubble source (+) and
sink (�) terms due to bubble break-up (B) and coalescence (C),
respectively. By introducing the velocity vðd; x; tÞ, we implicitly as-
sume no dispersion in bubble velocity for a given size but possible
size related dispersion. These terms can be expressed by integral
expressions (e.g. Kalkach-Navarro et al., 1994; Kocamustafaogullari
and Ishii, 1995). At this time of our discussion, it is not useful to de-
tail their expressions. In isothermal flows without phase change,
the bubble growth rate G is only due to the gas compressibility.
The p th-order moment density balance equation is obtained by
making the product of Eq. (7) by dp and integrating over all possible
diameters. This gives:
@Sp

@t
þr:ðSpVpÞ � pGp�1Sp�1 ¼ Bþp � B�p þ Cþp � C�p ð8Þ

with the following definitions of the mean quantities appearing in
Eq. (8):

Vp ¼̂
R

vðd; x; tÞdpf ðd; x; tÞddR
dpf ðd; x; tÞdd

; Gp ¼̂
R

Gðd; x; tÞdpf ðd; x; tÞddR
dpf ðd; x; tÞdd

;

Bþp ¼̂
Z

Bþðd; x; tÞdpdd ð9Þ

and similar definitions for the three last terms in Eq. (8). This
equation has been derived by many authors (e.g. Kamp et al.,
2001; Oesterlé, 2006) and is the basis for the derivation of different
useful geometrical moment densities balance equations. Making
successively p = 0, 1, 2, 3 in the general equation (8), and using the
definitions (5), the four balance equations for the bubble number
density n, the product of the bubble number density by the mean
diameter nd10, the interfacial area concentration ai and the void
fraction a are obtained:
@n
@t þr:ðnV0Þ ¼ Bþ0 � B�0 þ Cþ0 � C�0
@nd10
@t þr:ðnd10V1Þ � G0S0 ¼ Bþ1 � B�1 þ Cþ1 � C�1

@ai
@t þr:ðaiV2Þ � 2pG1nd10 ¼ pðBþ2 � B�2 þ Cþ2 � C�2 Þ
@a
@t þr:ðaV3Þ � G2

2 ai ¼ 0

ð10Þ

where the RHS (right-hand side) of the last equation (10) is zero be-
cause, when the whole bubble population is considered, the coales-
cence and break-up do not change the total amount of gas.

3. Single-size approach for bubbly flows

The single-size approach for bubbly flows has been used by
many authors (Guido-Lavalle and Clausse, 1991; Kalkach-Navarro
et al., 1994; Guido-Lavalle et al., 1994; Kocamustafaogullari and
Ishii, 1995; Wu et al., 1998; Hibiki and Ishii, 2000; Lhuillier et al.,
2000; Yao and Morel, 2004). This simplified approach consists in
assuming that, locally, all the bubbles have the same diameter
which can be given by the Sauter mean diameter. With this
assumption, the bubble number density and the mean bubble
diameter are given by the following relations:

n ¼ a
pd3

6

¼ 1
36p

a3
i

a2 ; d ¼ d32 ¼
6a
ai

ð11Þ

Another assumption in this single-size approach is that the four
mean velocities V0 to V3 appearing in Eqs. (10) are equal. Therefore,
in this paragraph, we denote this common velocity by VG. The main
assumptions being derived, we can give the closure for the bubble
growth rate G due to the gas compressibility.

Let D(x,t) be the bubble diameter in physical space (the notation
d stands for the bubble diameter in phase space). In the absence of
phase change, the bubble mass is conserved along its trajectory. As
a consequence, the bubble diameter variation and the gas density
variation measured along the bubble path are related through:

DðDÞ
Dt
¼ � D

3q
Dq
Dt

ð12Þ

where q denotes the gas density. The quantity G appearing in Eq. (7)
is the conditional expectation of the Lagrangian derivative given by
(12) conditioned by the equality D(x,t) = d:

G ¼ DðDÞ
Dt

����D ¼ d
� �

¼ � d
3

1
q

Dq
Dt

����D ¼ d
� �

ffi � d
3

1
qG

@qG

@t
þ VG:rqG

� �
ð13Þ

If we assume that the gas density q does not depend on the
bubble diameter D, the conditional average appearing in the sec-
ond expression of Eq. (13) can be replaced by the unconditional
one. The last equality in Eq. (13) simply assumes that we neglect
non-linear effect when we average the two terms under the brack-
ets, therefore keeping only first order effects. Now, we can calcu-
late the terms G0 to G2 appearing in Eqs. (10) from the definition
(9)2, we obtain:

G0 ¼ � 1
3qG

@qG
@t þ VG:rqG

� 	
S1
S0

G1 ¼ � 1
3qG

@qG
@t þ VG:rqG

� 	
S2
S1

G2 ¼ � 1
3qG

@qG
@t þ VG:rqG

� 	
S3
S2

ð14Þ

Substituting relations (14) into Eqs. (10) and using the defini-
tions (5) gives:

@n
@t þr:ðnVGÞ ¼ Bþ0 � B�0 þ Cþ0 � C�0
@S1
@t þr:ðS1VGÞ ¼ � 1

3qG

@qG
@t þ VG:rqG

� 	
S1 þ Bþ1 � B�1 þ Cþ1 � C�1

@ai
@t þr:ðaiVGÞ ¼ � 2ai

3qG

@qG
@t þ VG:rqG

� 	
þ pðBþ2 � B�2 þ Cþ2 � C�2 Þ

@a
@t þr:ðaVGÞ þ a

qG

@qG
@t þ VG:rqG

� 	
¼ 0

ð15Þ

It can be seen that the last equation (15) is the same as the first
equation (1) where we put k = G, therefore the last equation (15) is
redundant since we simply retrieve the mass balance equation for
the gas phase. Using this equation into the preceding one (15)3, the
equation for the IAC can be rewritten into the following equivalent
manner:

@ai

@t
þr:ðaiVGÞ ¼

2ai

3a
@a
@t
þr:ðaVGÞ

� �
þ pðBþ2 � B�2 þ Cþ2 � C�2 Þ

ð16Þ
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It can also be seen, under the assumptions retained here, that the
coalescence and break-up terms in Eqs. (15)1 and (16) are not inde-
pendent, since we can write for spherical bubbles (Lhuillier,
2004b):

pðBþ2 � B�2 þ Cþ2 � C�2 Þ ¼
ai

3n
ðBþ0 � B�0 þ Cþ0 � C�0 Þ

¼ 12p a
ai

� �2

ðBþ0 � B�0 þ Cþ0 � C�0 Þ ð17Þ

Substituting Eq. (17) into Eq. (16), we obtain the following final
form:

@ai

@t
þr:ðaiVGÞ ¼

2ai

3a
@a
@t
þr:ðaVGÞ

� �
þ 12p a

ai

� �2

ðBþ0 � B�0 þ Cþ0 � C�0 Þ ð18Þ

which was derived independently by Hibiki and Ishii (2000).
Since the different geometrical quantities are related by Eqs.

(11) in the single-size approach, it is completely equivalent to
use Eq. (15)1 for n or Eq. (18) for ai to close the system (the S1 bal-
ance equation is not useful in this context).

At the end, the break-up and coalescence terms Bþ=�0 and Cþ=�0

must be modelled. Here we have retained the model proposed by
Wu et al. (1998) for our MTLOOP calculations. This model is sum-
marized in Appendix A.

4. First moment density approach: use of a log–normal law

In the framework of their study on the coalescence of bubbles in
microgravity, Kamp and co-workers (Kamp, 1996; Kamp et al.,
2001; Riou, 2003; Colin et al., 2004) developed a model in the con-
text of Eqs. (10). They have also assumed that the bubble diameter
distribution function can be adequately described by a log–normal
law, which reads:

f ðd; x; tÞ ¼ nðx; tÞffiffiffiffiffiffiffi
2p
p

r̂ðx; tÞd
exp �flnðd=d00ðx; tÞÞg2

2r̂ðx; tÞ2

" #
ð19Þ

where d00(x,t) and r̂ðx; tÞ are a characteristic diameter and a width
parameter, respectively. The diameter d00 stands for the number-
median diameter, the number of bubbles for which d < d00 being
the same as that for which d > d00 (Kamp et al., 2001). Eq. (19)
shows that the bubble diameter distribution function is completely
determined at a point (x,t) by the knowledge of the quantities
d00(x,t), r̂ðx; tÞ and n(x,t). The two parameters of the diameter prob-
ability density function are analytically expressed by the following
functions of the particular moment densities S1 and S2 and of the
void fraction a (Kamp et al., 2001):

r̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

6aS1

pS2
2

 !vuut ; d00 ¼
6a
pS2

e�5r̂2=2 ð20Þ

Then, these two parameters being known, any moment density
defined by relation (3) can be analytically expressed by the follow-
ing relation:

Sp ¼
6a
p

dp�3
00 exp½r̂2ðp2 � 9Þ=2� ð21Þ

In particular, we have for the bubble number density:

n ¼ 6a
pd3

00

exp½�9r̂2=2� ð22Þ

It is worth pointing out that the deduction of the two parame-
ters d00 and r̂ from a couple of two moment densities Sp and Sq–p is
not straightforward and not even always well mathematically de-
fined. Nevertheless one has been able to deduce these parameters
from S1 and S2 while ensuring conservation of ai and positivity of r̂.
In this way, the system is completely closed by the resolution of
the two balance equations for S1 and S2 given by Eqs. (10). Making
similar assumptions as in Section 3 for the gas compressibility
terms, these equations read:

@S1
@t þr:ðS1VGÞ ¼ �r:½ðS1ðV1 � VGÞÞ� � S1

3qG

@qG
@t þ VG:rqG

� 	
þBþ1 � B�1 þ Cþ1 � C�1

@S2
@t þr:ðS2VGÞ ¼ �r:½ðS2ðV2 � VGÞÞ� � 2S2

3qG

@qG
@t þ VG:rqG

� 	
þBþ2 � B�2 þ Cþ2 � C�2

ð23Þ

In the original model of Kamp, the coalescence terms Cþ=�1 and
Cþ=�2 were the only terms which were taken into account in the
RHS of Eqs. (23). The modelling of these coalescence terms is given
in Appendix A.

In the following, we give some general comments on the other
terms.

The second term in the RHS of each balance equation (23) rep-
resents the effect of the gas compressibility onto the moment den-
sities S1 and S2 and needs no further modelling.

The first terms in the RHS of Eqs. (23) are clearly an effect of the
multiple sizes of bubbles, as it can be seen from the definition (9)1.
In his modelling of multi-size droplet flows, Mossa (2005) also
adopts a log–normal law for the droplet diameter distribution
function, and a Gaussian law to model the droplet velocity distri-
bution function. In this way, this author proposes a modelling of
the first terms in the RHS of Eqs. (23) which he called ‘‘uncorre-
lated fluxes”. Unfortunately, his work on gas-droplet flows cannot
be transposed to bubbly flows, because the assumption of heavier
fluid particles than the continuous phase, which is true for droplets
in a gas, but is false for bubbles in liquid. At this time, we have no
available model for the uncorrelated fluxes, therefore these terms
are neglected in our first approach, hence making a similar
assumption on velocities that it was done in Section 3.

The last terms Bþ=�1 and Bþ=�2 are the break-up terms. Unfortu-
nately, the bubble break-up contribution cannot be modelled using
the present formalism with the log–normal law. The reason is that
this law has a semi-infinite support, and this leads to the diver-
gence of integrals of the break-up modelling (Riou, 2003). It seems
that the only solution to alleviate this problem is to choose another
mathematical expression for the bubble diameter distribution
function. This will be done in the following section. Therefore,
the break-up is not taken into account in the balance equations ob-
tained in the framework of the moment density method consider-
ing a log–normal law. Eqs. (23) finally reduce to:

@S1
@t þr:ðS1VGÞ ¼ � S1

3qG

@qG
@t þ VG:rqG

� 	
þ Cþ1 � C�1

@S2
@t þr:ðS2VGÞ ¼ � 2S2

3qG

@qG
@t þ VG:rqG

� 	
þ Cþ2 � C�2

ð24Þ
5. Second moment density approach: use of a quadratic law

Ruyer and co-workers (Ruyer, 2008; Ruyer et al., 2007; Seiler
and Ruyer, 2008) chose a mathematical expression for the bubble
diameter distribution function which is simpler than the log–nor-
mal law. The chosen expression is simply a second order polyno-
mial of the variable d and is given by:

f ðd; x; tÞ ¼
nðx; tÞ 3d

4d3
10
ð2d10ðx; tÞ � dÞ if d � 2d10

0 elsewhere

(
ð25Þ

The graph of the function f versus d is simply a parabola extend-
ing from the point (0,0) to the point (2d10,0). The symmetry axis of
the parabola is a vertical line which cuts, on one hand, the axis d at
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the particular diameter d10, and on the other hand, cuts the curve
at its maximum. Therefore, the maximum of f is obtained for the
diameter d10, which is also the number-median diameter. The p
th-order moment of the distribution function (25) is obtained ana-
lytically as:

Sp ¼
6nð2d10Þp

ðpþ 2Þðpþ 3Þ ð26Þ

In particular, the following relations between the averaged geo-
metrical quantities are obtained:

n ¼ 1
24:3p

a3
i

a2 ; d10 ¼
9
2

a
ai
; d32 ¼

4
3

d10 ð27Þ

As n and d10 both are expressed as functions of a and ai, the
knowledge of these last two quantities is sufficient to completely
close the system based on the distribution function (25). Therefore,
the authors chose to solve the balance equation for the IAC given
by Eq. (15)3 with particular expressions of the coalescence and
break-up terms deduced from (25) combined with chosen expres-
sions for the coalescence and break-up kernels. Their coalescence
and break-up models are summarized in Appendix A. They do
not consider a different velocity to transport ai than the mean
gas velocity (i.e. they made the assumption V2 = VG) but they ob-
tained averaged expressions for the drag and lift coefficient, using
(25) considering the drag coefficient model given by Ishii (1990)
and the lift coefficient established by Tomiyama (1998). This ap-
proach based on the moment density method and such quadratic
bubble diameter distribution function has already been adapted
to boiling bubbly flow studies.

6. Multi-field approach

The so-called MUSIG model (for Multi-Size-Group), sometimes
called the multi-field or multi-class approach (Oesterlé, 2006), is
probably the most popular method to calculate bubbly flows with
bubble multiple sizes (Tomiyama and Shimada, 1998; Carrica et al.,
1999; Lucas et al., 2001; Jones et al., 2003; Chen et al., 2005;
Krepper et al., 2006; Sha et al., 2006; Lucas and Krepper, 2007).
This method consists in deciding of a minimal and a maximal
values for the bubble diameter dmin and dmax (i.e. an interval
[dmin, dmax] within the different bubble diameters lie) and to split
this interval into N sub-intervals [di�1/2, di+1/2], each sub-interval
being centred on a discrete value of the bubble diameter di. The
ith class, or field, is defined as the set of bubbles having their diam-
eter comprised between di�1/2 and di+1/2.

The bubble number density of the bubbles in class i is defined
as:

ni¼̂
Z diþ1=2

di�1=2

f ðd; x; tÞdd ð28Þ

and the mean volumetric fraction (void fraction) related to the same
class ai is defined as:

ai¼̂
Z diþ1=2

di�1=2

pd3

6
f ðd; x; tÞdd ffi ni

pd3
i

6
ð29Þ

The discrete diameters di being known (they are chosen by the
code user at the beginning of the calculation and are assumed con-
stants during all the calculation), it is equivalent to solve the prob-
lem considering variables such as the bubble number densities ni

or the partial void fractions ai. The averaged gas density and veloc-
ity for the bubbles in the ith class are defined by the following
relations:

aiqg;i ¼̂
R diþ1=2

di�1=2
qðd; x; tÞ pd3

6 f ðd; x; tÞdd

aiqg;iVg;i ¼̂
R diþ1=2

di�1=2
qðd; x; tÞvðd; x; tÞ pd3

6 f ðd; x; tÞdd
ð30Þ
In the case of isothermal flows considered here, the multi-field
approach consists in solving 2N mass and momentum balance
equations for the N different gas fields corresponding to the N sizes,
together with the two mass and momentum balance equations for
the liquid phase. As the diameters are known and remain at con-
stant values for all the bubble classes, the resolution of interfacial
area balance equations is not necessary. This should be necessary
in a (more complicated) variant of the method where the bubble
diameters would vary in time and space. Here, the bubble coales-
cence, bubble break-up and gas compressibility phenomena imply
mass (and possibly momentum) exchange terms between the dif-
ferent bubble classes. In what follows, we derive the mass balance
equation for the general bubble class i.

The mass balance equation for the bubbles in the ith class is ob-
tained by multiplying the Liouville–Boltzmann equation (7) by the
bubble mass qpd3/6 and integrating the resulting equation be-
tween di�1/2 and di+1/2. In order to do that, it is assumed that the
gas density does not depend on the considered class, i.e. on the
bubble diameter. The integration of the first two terms gives:R diþ1=2

di�1=2
q pd3

6
@f
@t dd ¼ @aiqg

@t �
R diþ1=2

di�1=2
f pd3

6
@q
@t ddR diþ1=2

di�1=2
q pd3

6 r:ðf vðd; x; tÞÞdd ¼ r:ðaiqgVg;iÞ �
R diþ1=2

di�1=2
f pd3

6 v:rqdd

ð31Þ

Integrating by parts the third term in the LHS of (7), we find:Z diþ1=2

di�1=2

q
pd3

6
@fGðd; x; tÞ

@d
dd ¼ qG

pd3
iþ1=2

6
f ðdiþ1=2ÞGðdiþ1=2Þ

� qG

pd3
i�1=2

6
f ðdi�1=2ÞGðdi�1=2Þ

�
Z diþ1=2

di�1=2

q
pd2

2
fGðd; x; tÞdd ð32Þ

As shown by Eq. (13), the bubble growth rate G, due to com-
pressibility, is approximately given by �(d/3q)(@q/@t+v.@q).
Substituting this expression for G into the last term in the RHS of
Eq. (32) and adding the resulting equation to Eq. (31), we obtain:Z diþ1=2

di�1=2

q
pd3

6
@f
@t
þr:ðf vÞ þ @fG

@d

� �
dd

¼
@aiqg

@t
þr:ðaiqgVg;iÞ þ qG

pd3
iþ1=2

6
f ðdiþ1=2ÞGðdiþ1=2Þ

� qG

pd3
i�1=2

6
f ðdi�1=2ÞGðdi�1=2Þ ð33Þ

Finally, the integration of the complete equation (7) gives the
following mass balance equation for the ith class:

@aiqg

@t
þr:ðaiqgVg;iÞ ¼ qG

pd3
i�1=2

6
f ðdi�1=2ÞGðdi�1=2Þ

� qG

pd3
iþ1=2

6
f ðdiþ1=2ÞGðdiþ1=2Þ

þ Bþi � B�i þ Cþi � C�i ð34Þ

with the following definition for the term Bþi :

Bþi ðx; tÞ¼̂
Z diþ1=2

di�1=2

q
pd3

6
Bþðd; x; tÞdd ð35Þ

and similar definitions for B�i , Cþi and C�i . The description of these
break-up and coalescence terms is given in Appendix A. The first
two terms in the RHS of Eq. (34) represent the mass fluxes entering
into the bubble class i and exiting from it. These fluxes are due to
the bubbles size growth or reduction caused by gas density varia-
tions. Before deriving an approximate closed expression for these



Table 1
Distances between the 10 measuring sections and the air injection device.

Section A B C D E F H J K L

Z (m) 0.03 0.08 0.13 0.23 0.43 0.83 1.53 2.03 2.53 3.03
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fluxes, we must establish the conditions that should be verified by
the total gas mass balance equation. This equation is obtained by
summing the N equations (34) written for the N classes regarding
that:

a ¼
XN

i¼1

ai; aVg ¼
XN

i¼1

aiVg;i ð36Þ

The first relation (36) simply recalls that the total void fraction
is the sum of the partial void fractions of the N classes, and the sec-
ond one defines the mean gas velocity as the velocity of the centre
of volume of all the bubbles (which coincides with the centre of
mass when the gas density does not depend on the bubble size,
as it is assumed here). The obtained total gas mass balance equa-
tion reads:

@aqg

@t
þr:ðaqgVgÞ

¼ �qg

XN

i¼1

pd3
iþ1=2

6
f ðdiþ1=2ÞGðdiþ1=2Þ �

pd3
i�1=2

6
f ðdi�1=2ÞGðdi�1=2Þ

" #

¼ �qg

pd3
Nþ1=2

6
f ðdNþ1=2ÞGðdNþ1=2Þ �

pd3
1=2

6
f ðd1=2ÞGðd1=2Þ

" #
ð37Þ

considering that the coalescence and break-up phenomena do not
change the total amount of gas (Appendix A.4). The following
boundary conditions on G are derived from the identification of
Eq. (37) with Eq. (1)1 for k = g:

Gðd1=2Þ ¼ GðdNþ1=2Þ ¼ 0 ð38Þ

Conditions (38) have no physical basis, and are even incoherent
with Eq. (13). Nevertheless, they are coherent with the method de-
scribed here which considers only bubble diameters between
dmin = d1/2 and dmax = dN+1/2. As it is assumed with this method that
no gas is present for bubble diameters smaller than d1/2 or greater
than dN+1/2, conditions (38) are simply boundary conditions on G
which guarantee that the gas cannot exit from the authorized bub-
ble diameter range. Now we must establish approximate expres-
sions for the first two terms in the RHS of Eq. (34). When the
index i + 1/2 is different from ½ or N + 1/2, the growth rate G is cal-
culated as an approximate form of Eq. (13):

Gðdiþ1=2Þ ¼ �
diþ1=2

3qg

@qg

@t þ Vg;iþ1=2:rqg

� 	
with :

diþ1=2 ¼ diþdiþ1
2 and Vg;iþ1=2 ¼

Vg;iþVg;iþ1
2

ð39Þ

The distribution function at the diameter di+1/2 is calculated by
using the following approximation:Z diþ1

di

pd3

6
f ðdÞdd ffi

pd3
iþ1=2

6
f ðdiþ1=2Þ½diþ1 � di�¼̂aiþ1=2

)
pd3

iþ1=2

6
f ðdiþ1=2Þ ¼

aiþ1=2

½diþ1 � di�
ð40Þ

In order to evaluate the value of ai+1/2, we use an upwind
scheme according to the sign of the function G:

aiþ1=2Gðdiþ1=2Þ ¼ ai maxðGðdiþ1=2Þ; 0Þ þ aiþ1 minðGðdiþ1=2Þ; 0Þ ð41Þ

Finally, the mass balance equation (34) for the bubble class i can
be rewritten as:

@aiqg

@t
þr:ðaiqgVg;iÞ¼qG

ai�1=2

½di�di�1�
Gðdi�1=2Þ�qG

aiþ1=2

½diþ1�di�
Gðdiþ1=2Þ

þBþi �B�i þCþi �C�i
ð42Þ

with the four terms Bþi ; B�i ; Cþi and C�i given in Appendix A.
In the present state of the method, we do not take into account
the bubble momentum transfers between classes, due to the differ-
ent mass transfers appearing in the RHS of Eq. (42). It is assumed
that these transfers are negligible in comparison to the interfacial
momentum transfers between each bubble class and the liquid
phase. Neglecting the momentum transfers associated to the mass
transfers, the momentum equation (1)2 continues to be valid but
we have now N equations (1)2 for the N gas fields. Each of these
equations involves an interfacial transfer term Mg,i which is the
sum of a drag force, an added mass force, a lift force. . .acting on
bubbles of diameter di. The momentum interfacial transfer in the
liquid phase ML is consequently the sum of the N terms Mg,i with
the opposite sign, in order to verify Eq. (2). The various averaged
forces being calculated according to the appropriate values of the
diameter and of the partial void fraction of each class, they will dif-
fer from one class to another one. Therefore, the bubbles of the dif-
ferent classes will have different mean velocities, in magnitude and
in direction. So it is worthwhile to underline that this approach
takes into account in a natural way the multiple velocities associ-
ated with the multiple sizes, a characteristic that is not easily han-
dled by other approaches presented in the preceding sections.
7. Description of the MTLOOP experiment

In the MTLOOP facility (Lucas et al., 2005), the evolution of a
two-phase bubbly flow is observed in a vertical tube having an in-
ner diameter equal to 51.2 mm and a length equal to 3.5 m. An air–
water mixture at a temperature equal to 30 �C is supplied at the
bottom of the tube. The use of a wire-mesh sensor allows to mea-
sure radial profiles of void fraction for a given range of bubble
sizes, as well as bubble size distribution functions. The measure-
ments are performed for up to 10 different inlet lengths and for
about 100 combinations of gas and liquid volume flow rates. Here
we choose to simulate the test number 118 which is characterized
by a liquid inlet superficial velocity JL equal to 1.017 m/s and a gas
inlet superficial velocity JG equal to 0.219 m/s.

The distance between the wire-mesh sensor and the air injec-
tion device varies from 0.03 m to 3.03 m (inlet lengths 0.6–
60 L/D). Ten axial distances are investigated, corresponding to 10
measuring sections, each identified by a letter. The correspondence
between the measuring sections and the distances from the air
injection device is given in Table 1.

Data are recorded by an electrode wire-mesh sensor that mea-
sures the instantaneous conductivity distribution. The conductivity
is a measurement from which is derived the gas volume fraction.
The spatial resolution is given by the pitch of the electrode wires
which is equal to 2 mm. The number of electrode wires is
24 � 24. A number of 2500 cross-sectional frames per second is
recorded, during a measuring time equal to 10 s. Therefore, the
matrix of the measurement for each measuring section has the
dimension of 24 � 24 � 25,000.

A special procedure allows the identification of single bubbles
and the determination of their volume v, and hence, of their vol-
ume-equivalent diameter:

d ¼
ffiffiffiffiffiffi
6v
p

3

r
ð43Þ

Using this procedure, bubble size distributions as well as gas
volume fraction profiles for bubbles within a predefined interval
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of bubble sizes can be evaluated. For the calculation of bubble size
distributions, the equivalent bubble diameter is subdivided into
intervals and the contribution of each individual bubble to the
gas volume fraction is evaluated for each interval. This gives bub-
ble size distribution functions related to the gas volume fraction
instead of being related to the bubble number density (f). The latter
has the disadvantage of poorly reflecting the number of large bub-
bles, since the number density of small bubbles is much higher.
According to this new definition of the bubble size distribution
function:

hðdÞ ¼̂ da
dd

ð44Þ

the integral over all possible bubble sizes results in the total void
fraction:

a ¼
Z 1

0
hðdÞdd ð45Þ

In each measuring section, we dispose of the radial profile of the
total void fraction defined by Eq. (45) and the bubble diameter dis-
tribution function defined by Eq. (44) averaged over the duct cross-
section. These quantities will be compared to the numerical results
obtained with the help of the NEPTUNE_CFD code considering the
various approaches into the following section.

8. Numerical simulations of the MTLOOP experiment

All the numerical simulations presented in this section have
been performed with the NEPTUNE_CFD code, developed jointly
by Electricité de France and the French Commissariat à l’Energie
Atomique, these developments being also financially supported
by AREVA_NP and the Institut de Radioprotection et de Sûreté
Nucléaire. This code is based on the two-fluid approach (Eqs. (1))
generalized into an N-field approach (a field being defined by
one set of mass, momentum and energy balance equations). Sev-
eral auxiliary balance equations can be used like a two-phase K–e
model for bubbly flow (Morel, 1995; Morel et al., 2004, 2005) or
additional balance equations for geometrical quantities like the
ones developed in Section 2. Since we are dealing with isothermal
flows without phase change, it is sufficient to solve the mass and
momentum balance equations (1) (the enthalpy equations are
not solved) together with the K–e model for the liquid phase and
the geometrical balance equation(s) for the gas phase. The descrip-
tion of the K–e model is postponed to Appendix B.

8.1. Single-size bubble approach

In this approach, we use the single-size model as derived by Wu
et al. (1998). We solve the bubble number density balance equa-
tion (15)1 together with the coalescence and break-up terms given
by Eqs. (A.1)–(A.4) in Appendix A. The momentum interfacial
transfer term Mk is assumed to be the sum of five forces: the drag
force, the added mass force, the lift force, the turbulent dispersion
force and the wall force. In the following, we give the detailed
expressions of these forces. The drag force is classically expressed
by the following expression:

MD
G ¼ �MD

L ¼ �
1
8

aiqLCDjVG � VLjðVG � VLÞ ð46Þ

The drag coefficient CD has been empirically modelled by Ishii
(1990):

CD ¼ 2
3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gjqG�qL j

r

q
1þ17:67jf ðaÞj6=7

18:67f ðaÞ

n o
with f ðaÞ¼ ð1�aÞ1:5 distorted bubbles

CD ¼ 8
3ð1�aÞ2 churn-turbulent regime

ð47Þ
According to the value of the diameter d, the bubbles fall into
the distorted bubble regime or into the churn-turbulent regime.

The added mass force is given by the following expression:

MA
G ¼ �MA

L ¼ �CAEðaÞaqL
@VG

@t
þ VG:rVG

� �
� @VL

@t
þ VL:rVL

� �
 �
ð48Þ

The added mass coefficient CA for a single spherical bubble is
equal to 0.5, but due to the presence of the other bubbles, Zuber
(1964) proposed to correct this value by the factor E(a) = (1 +
2a)/(1 � a), on the basis of a calculation performed by Lamb
(1932).

The lift force is given by the following relation (Auton, 1987):

ML
G ¼ �ML

L ¼ �CLaqLðVG � VLÞ ^ ðr ^ VLÞ ð49Þ

The lift coefficient CL is given by the following empirical corre-
lation (Tomiyama, 1998):

CL ¼
min

0:288 tanhð0:121ReÞ;
0:00105Eo3

H � 0:0159Eo2
H � 0:0204EoH þ 0:474

" #
if EoH < 4

0:00105Eo3
H � 0:0159Eo2

H � 0:0204EoH þ 0:474 if 4 � EoH � 10
�0:27 if EoH > 10

8>>>><>>>>:
ð50Þ

with the modified Eotvos number defined by:

EoH ¼̂
gðqL � qGÞd

2
H

r
ð51Þ

where dH is the maximum horizontal dimension of the deformed
bubble, which is calculated using an empirical correlation given
by Wellek et al. (1966), as reported by Krepper et al. (2006):

dH ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:163Eo0:7573

q
ð52Þ

where d is the (spherical) equivalent bubble diameter and Eo has a
similar expression as Eq. (51) with d instead of dH. The bubble
Reynolds number Re is calculated according to the classical
definition.

The turbulent dispersion force is modelled according to Krepper
et al. (2006) and is given by the following expression:

MTD
G ¼ �MTD

L ¼ �
3
4

CD

d
qLm

T
L jVG � VLjra ð53Þ

where CD is the drag coefficient and mT
L is the liquid turbulent viscos-

ity, which is obtained from the solution of the K–e model.
The wall force is the one derived by Antal et al. (1991). It reads:

MW
G ¼ �MW

L ¼
aqL

Rb
jU==j2 max 0; CW1 þ CW2

Rb

y


 �
nW

U== ¼ ðVG � VLÞ � ½ðVG � VLÞ:nW �nW

CW1 ¼ �0:104� 0:06UR

CW2 ¼ 0:147

ð54Þ

where Rb = d/2 is the bubble radius, y is the distance to the wall, nW

is the unit vector normal to the wall surface and U== is the tangential
part of the relative velocity, UR being its norm.

For the two moment methods, as well as for the single-size
model, all the forces presented above are calculated by using the
bubble Sauter mean diameter d32, which is always available. For
the multi-field method, each bubble class is characterized by a sin-
gle bubble diameter di and a corresponding momentum balance.
The momentum exchanges between this particular gas field and
the continuous liquid field are also calculated with the models gi-
ven in Eqs. (46)–(54) with the corresponding value of the bubble
diameter di.

Due to the sensitivity of our results to the lift model, we have
plotted the curve representing the lift coefficient given by Eq. (50)
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for an air–water system at normal conditions (Supplementary
Fig. S1). It can be seen that the sign of the lift coefficient changes
for a bubble diameter approximately equal to 5.8 mm.

Three different grids have been used to calculate the MTLOOP
experiment, named mtloop1,2 or 3, respectively. As the flow re-
mains axi-symmetric, the grids are reduced to two-dimensional
regular grids of the plane (r,z). The basic grid mtloop1 consists in
10 radial meshes and 100 axial meshes. The two other grids are ob-
tained from the first one by multiplying the number of meshes in
each direction by a factor 2, therefore the second grid mtloop2
has 20 radial meshes and 200 axial meshes and the third one,
mtloop3, has 40 radial meshes and 400 axial meshes. We have first
made three calculations with Wu’s model on these three grids to
test the grid sensitivity. The grid convergence is nearly attained
with the second grid, mtloop2, since the results do not change sig-
nificantly between the second grid and the third one. This is illus-
trated in a comparison of the void fraction profiles taken in Section
L (Supplementary Fig. S2).

In Fig. 1, we compare the results obtained with the finest grid
and the experimental total void fraction (Eq. (45)) for the 10 radial
profiles. The 10 different pictures in this figure correspond to the
different measuring sections indicated in Table 1. In each of these
pictures, the experimental profile is indicated by red circles and
the calculated one is indicated by a black continuous line. It can
be seen in Fig. 1 that the experimental profile near the inlet is
not flat.
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Fig. 1. Void fraction. Single-size approach.
It would be possible to reproduce such inlet conditions for the
single-size approach but one of our final goals is to compare all
the approaches in the same conditions.

Unfortunately, we had not enough information to reproduce
this profile in our calculations in the approach considering several
groups of bubbles (the multi-field method) since we dispose only
of the radial profiles of the total void fraction and the bubble diam-
eter distribution function averaged over the duct cross-section (see
Section 7). Therefore, we are not able to reproduce the inlet condi-
tions for each partial void fraction field in the multi-field method
(see Section 8.4) for each point of the radial profile. That is why
we choose to ignore the inlet shape of the void fraction profile
whatever the approach is. So, flat profiles are imposed, which con-
serve the averaged values of the void fraction as well as the liquid
and gas superficial velocities. Fortunately, as it can be seen in Fig. 1,
the influence of the inlet shape rapidly disappears along the flow
because of bubbles radial migration. From the fourth measuring
Section D up to the last one L, the simulation results obtained on
the void fraction profiles are in quite good agreement with the
data. In particular, the so-called ‘‘void coring” (a maximum of the
void fraction in the central part of the tube) observed in the exper-
iment is reproduced.

As the experimental bubble diameter distribution function de-
fined by Eq. (44) is available in each measuring section, we can de-
duce from it the different mean diameters defined by Eq. (4) and
the different moment densities defined by Eq. (5). According to
the particular definition (44), these quantities read:

d10 ¼
R

dhðdÞddR
hðdÞdd

; d20 ¼
R

d2hðdÞddR
hðdÞdd

� �1=2

; d30 ¼
R

d3hðdÞddR
hðdÞdd

� �1=3

;

d32 ¼
R

d3hðdÞddR
d2hðdÞdd

n ¼ S0 ¼ 6a
pd3

30
; ai ¼ pS2 ¼ npd2

20

ð55Þ

Relations (55) lead to one value of each quantity in each mea-
suring section, since h(d) is a global quantity defined in each mea-
suring section. So, in order to compare our results to the
experimental quantities defined by Eqs. (55), we should proceed
to their spatial averages over the duct cross-section. We make such
an operation for the two quantities considered in Wu’s model: the
interfacial area concentration ai and the bubble Sauter mean diam-
eter d32. The comparison of the axial profiles (taken along the tube)
of the spatially averaged quantities haii and hd32i are illustrated in
Supplementary Figs. S3 and S4, and also in Figs. 5 and 6 which give
the comparison between the different approaches.

It can be seen in these figures that the IAC and the SMD are
quite well reproduced in the first half of the tube (up to
z = 1.53 m). In the second half, the IAC is overestimated and the
SMD is underestimated by Wu’s model. The calculated SMD is al-
ways greater than 6 mm, therefore the lift coefficient remains neg-
ative, as it can be seen in Supplementary Fig. S1. Thus, the lift force
is directed towards the pipe axis, which could explain the forma-
tion of the void coring.

8.2. Moments approach based on the log–normal law

In this subsection, the results obtained by using the model pre-
sented in Section 4 are presented. The partial differential equations
solved for the bubbles geometry are the two equations (24) with
the coalescence terms given in Eqs. (A.5) in Appendix A. It can be
seen from (A.5) that the coalescence terms C1 and C2 are propor-
tional to an adjustable constant KC which was fitted equal to 1
by the authors of the original model (Kamp et al., 2001). We first
made some calculations with this value, but it did not manage to
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produce the large experimental level of bubble coalescence. Some
sensitivity calculations to the value of KC have thus been made, and
the value KC = 50 has been retained for the calculations presented
here. About the forces influencing the interfacial momentum trans-
fer, the models are the same than those presented in Section 8.1.
The diameter used to evaluate these forces is the Sauter mean
diameter d32, as it was the case in the previous subsection. The
three different grids mtloop1,2,3 have also been tested. The grid
convergence is attained without difficulty and we present here
the results obtained with the finest grid.

The results are presented in Supplementary Figs. S5–S7 except
Fig. 2. The notation dalpha/dd in Fig. 2 corresponding to h(d) de-
fined in Eq. (44).

The comparisons presented in Supplementary Fig. S5 and Fig. 1
show that there is very little change on the prediction of the axial
evolution of the radial void fraction profile compared to the previ-
ous approach. This is essentially due to the lift force because the
major part of the bubbles has their diameters (Fig. 2 and Supple-
mentary Fig. S7) greater than the critical diameter (approximately
6 mm) for which the sign of the lift force changes. Nevertheless, the
lift force being essentially directed toward the pipe centre (nega-
tive lift coefficient), a void coring rapidly takes place, as it was
the case in the calculation with the single-size approach. Fig. 2
gives the comparison of the axial evolution of the bubble diameter
distribution function defined by Eq. (44). The red stairs curves cor-
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respond to the measured distribution functions in the 10 cross-sec-
tions, and the black line curves correspond to the log–normal law,
as determined by Eqs. (19) and (20) (previously divided by n and
multiplied by 100a in order to obtain da/dd in %/mm). Supplemen-
tary Figs. S6 and S7 give the axial evolution of the spatially aver-
aged IAC and of the spatially averaged SMD. These two figures
clearly underline that, with the chosen value KC = 50, the coales-
cence effect is too important in the first half of the tube, but insuf-
ficient in the second half. Fig. 2 illustrates this effect on the
predicted (and experimental) distribution functions. The predicted
distribution function is progressively shifted to the right, in com-
parison to the experimental one. The bubble size corresponding
to the maximum value of the distribution function is thus too large,
especially in the second half of the tube. The measured distribution
function is characterized by a peak between d = 5 mm and 10 mm,
which is the memory of the initial peak, but also by a long tail
which is progressively developing for bubble diameters greater
than 10 mm, up to 40 mm in the last two sections. The log–normal
law is not really able to reproduce this tail, showing the limitation
on the present approach based on this law.
8.3. Moments approach based on the quadratic law

The model based on the quadratic law, presented in Section 5
(Eqs. (25)–(27)) is considered. The coalescence and break-up terms
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are given by Eqs. (A.7) and (A.8) in Appendix A. The complete mod-
el gives too small sizes of bubbles (Fig. 3), but the void fraction pro-
file predicted is quite well reproduced (Supplementary Fig. S8).
Fig. 3 and Supplementary Figs. S9 and S10 show that the break-
up model given by Eq. (A.8) is too strong or the coalescence model
given in Eq. (A.7) is too weak. The three different grids mtloop1,2,3
have also been tested. The grid convergence is attained without
difficulty and we present here the results obtained with the finest
grid. A test has also been made using a different break-up model
based on the model of Yao and Morel, 2004 developed for mono-
disperse case adapted to the quadratic law (described in Ruyer
et al., 2007), but no grid convergence could be obtained. Another
calculation without taking into account break-up (only coales-
cence) can be compared with the results obtained with the
log–normal law. Corresponding results are displayed in Supple-
mentary Figs. S9 and S10, and summarized in Figs. 5 and 6. It
shows that the calculation correctly reproduced the features of
the flow. Analysis of the bubble size distribution shows that the
quadratic law correctly reproduced the maximum diameter of
the experimental distribution. It may help to interpret the result
obtained with the other calculations taking into account the
break-up: break-up would be too strong rather than coalescence
would be too weak.

8.4. Multi-field approach

Fig. 4 and Supplementary Figs. S11–S13 give the results ob-
tained with the multi-field approach on the finest grid mtloop3.
The grid convergence is attained without difficulty. The bubble
diameter range has been chosen to cover the largest extent ob-
served in this experimental test, namely [2 mm, 40 mm] according
to the bubble diameter distribution function measured in Section L.
This numerical diameter range has been subdivided into 19 bubble
classes, the diameter step Dd being assumed constant. The partial
void fractions imposed at the inlet for the different fields have been
evaluated from the bubble diameter distribution function mea-
sured in Section A. About the interfacial momentum transfer, the
models for the different forces are the same than those presented
in Section 8.1, except to the fact that here they are used for each
bubble field individually. The total void fraction radial profiles
(Supplementary Fig. S11) are well predicted from Section D to Sec-
tion L. According to Supplementary Figs. S12 and S13, the coales-
cence effect seems to be insufficient. However, the coalescence
seems to be too important according to the axial evolution of the
bubble diameter distribution function (Fig. 4). This result, associ-
ated to the results presented in the preceding paragraphs, dealing
with the two other multi-size approaches, illustrate the fact that it
is not necessary to reproduce correctly the bubble diameter distri-
bution function to have the correct trend on the averaged quanti-
ties, like the IAC or the SMD, as well as on the total void fraction
(at least on this particular experimental test). It is worth noting
that it is possible to define several diameter distribution functions
having the same IAC and total void fraction. But prediction of these
average quantities does not appear to depend on the amount of
information used to describe the distribution function. This sur-
prising result can be probably due to the fact that average quanti-
ties prediction is not sensitive to additional detailed information
on the distributions.

Another issue (Fig. 4) is the strong accumulation of gas near the
maximum bubble diameter authorized in the calculation (40 mm)
present from Section H to Section L. This is of course a numerical
bias of the multi-field method based on a fixed bubble diameter
range. This raises the question of the sensitivity of this method
to the ‘grid’ adopted to describe the bubble diameter range. We
can hope that this phenomenon of bubble accumulation near the
maximum diameter would disappear if we simply enlarge the
diameter range in the simulation. In our opinion, it is not so simple,
because this also strongly depends on the behaviour of the coales-
cence model for bubbles larger than the current boundary limit of
40 mm. It seems that the convergence of this type of simulation in
terms of ‘bubble diameter grid’ should be investigated in relation
with the coalescence (and break-up in the other sense) models. It
is a quite difficult (and probably long) task because of our igno-
rance of the physics underlying these two phenomena (coalescence
and break-up) and also because of the high CPU time necessary for
this kind of simulations. Except if we adopt a very simple model for
the bubble diameter distribution function (like we have done in
the two models based on a log–normal law and a quadratic law),
the price to pay to reproduce the bubble diameter distribution
function could be high (in terms of modelling efforts and of CPU
time).
9. Conclusions

Four different approaches have been tested to evaluate bubble
sizes in a vertical upward bubbly flow and their performances have
been investigated on the MTLOOP experiment. Three of these
methods handle the simultaneous existence of multiple bubble
sizes. The fourth method is the classical single-size approach,
where all the bubbles are characterized by a single, but variable,
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diameter. The single-size approach, using one interfacial area
concentration (IAC) balance equation, has been used to obtain a
‘‘reference calculation”.

The major difficulty, when one considers an isothermal bubbly
flow without phase change, consists in the modelling of the bub-
bles coalescence and break-up terms. Unfortunately, the knowl-
edge of these two phenomena in the general situation of a large
spectrum of bubble sizes, characterized by different shapes, is still
insufficient to correctly predict the spatial and temporal develop-
ment of such a bubbly flow in a large tube. Despite of this lack,
we have used the different approaches with existing coalescence
and break-up models. Our aim is not to claim that we have found
the better model, or the better approach, to simulate upward bub-
bly flows in vertical ducts, but to compare the merits and short-
comings of the different approaches presented here. Some of
these approaches, like the two variants of the moment density
method presented in Sections 4 and 5, are still in their infancy,
and have been used by very few people.

In the following paragraph, we will consider the different meth-
ods, and comment the obtained results on the MTLOOP experi-
ment, approach by approach.

We have chosen the model of Wu et al. (1998) for the bubble
coalescence and break-up in case of the single-size approach, be-
cause it gives quite good results on the studied experimental case.
Other models have been tested like the ones from Hibiki and Ishii
(2000), Ishii and Kim (2001) and also Yao and Morel (2004) but
none of these models give results as good as the ones obtained
with Wu’s model. The strong sensitivity of the results to the model
used (results not presented here) gives an idea of the importance,
and also on the difficulty, to correctly model the bubble coales-
cence and break-up phenomena. The calculation done with Wu’s
model provides in a reference calculation to compare the perfor-
mances of the three multi-size approaches. With this model, the
cross-sectional averaged IAC and SMD axial evolutions are quite
well reproduced (Figs. 5 and 6), especially in the first half of the
tube. The axial evolution of the void fraction radial profile is also
well reproduced (Fig. 1) showing the formation of a void coring
in the second half of the tube. This void coring is attributed, at least
in the model, to the negative sign of the lift coefficient when the
bubble diameter is greater than a critical value of approximately
6 mm for air–water flows at ambient conditions. In fact, in all the
calculations, this void coring formation is well reproduced because
the predicted bubble diameters are large enough to induce a neg-
ative lift coefficient (Supplementary Fig. S1), therefore creating a
lift force oriented towards the pipe axis.
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The first presented variant of the moment density approach is
based on the log–normal law. The coalescence model previously
developed by Kamp et al. (2001) in their study of bubble coales-
cence in microgravity has been used. The gas expansion due to
compressibility is also modelled, but unfortunately we have failed
to model the bubble break-up in this framework. According to Riou
(2003), the break-up cannot be modelled in the context of a log–
normal diameter distribution function because this law has a
semi-infinite support and this makes the break-up integral in the
moments equations to diverge. This is the main shortcoming of
the present approach. Despite the absence of a bubble break-up
term in the equations, we have been forced to strongly increase
the coalescence terms (by increasing the factor KC of the original
model by 50) to obtain a sufficient coalescence effect compare to
the MTLOOP experimental results. Nevertheless, considering this
fitted value, the coalescence is too strong in the first half of the
tube, but too weak in the second half (Figs. 5 and 6). The analysis
of the log–normal distribution function compared to the experi-
mental one (Fig. 2) shows that the log–normal law is shifted to-
wards the big diameters, and does not reproduce the
experimental tendency, but looks more alike the experimental
one than the quadratic law illustrated in Fig. 3.

Indeed, the quadratic law has a parabolic shape (Fig. 3) which is
far away from the shape of the distribution function experimen-
tally observed. The bubbles break-up is overestimated in the pres-
ent state of our model. Nevertheless, the void coring formation
observed on the void fraction profiles is correctly reproduced.
The main shortcomings of the quadratic law are (i) that its graph
is symmetric with respect to the mean diameter d10, which is often
unrealistic because this means that we have the same quantity of
small and large bubbles and that (ii) this law imposes a direct rela-
tion between the mean bubble diameter d10 and the width of the
distribution function. Therefore the model cannot degenerate into
the simple case of a unique size of bubbles, unless a nil size. These
shortcomings are due to the low number of parameters in the
expression (25). It could be noticed that the log–normal law has
an additional parameter, in comparison to the quadratic law. This
is the reason why the closure of the method based on the log–nor-
mal law needs the solution of two moment densities balance equa-
tions instead of only one for that involving the quadratic law. The
great advantage of the quadratic law in comparison to the log–nor-
mal one, resides in its mathematical simplicity which allows to cal-
culate the break-up integral, and also to properly average the drag
and lift forces over the different bubble sizes. A calculation without
any break-up allows to compare with the results obtained with the
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log–normal law. It shows very good agreement with the experi-
mental data and this suggests that taking into account break-up
using the Wu model leads to an overestimation of the break-up.

The multi-field approach has been tested for the first time in the
NEPTUNE_CFD code. This approach is completely different from
the two other ones; therefore it has been presented in a detailed
manner in this paper. Coalescence and break-up phenomena have
been taken into account, as well as the gas expansion due to com-
pressibility. The results obtained on the IAC measured along the
tube is quite good (Supplementary Fig. S12 or Fig. 5) and the devel-
opment of the void coring is also very well reproduced (Supple-
mentary Fig. S11). The bubble diameter distribution function
overlaps the experimental one at the beginning of the tube
(Fig. 4) but rapidly the coalescence effect seems to be more rapid
than in the experiment. This excessive simulated coalescence, to-
gether with the fixed discretisation adopted for the bubble diame-
ter range, gives an unphysical gas accumulation near the
maximum authorized diameter. Future investigations are needed
on the influence of the bubble diameter range and on its discreti-
sation, but also on the bubble coalescence and break-up mass ex-
change terms. It seems that this approach has more potentialities
than the two previous ones (e.g. the simulation of bubbles with dif-
ferent sizes and different velocities comes naturally, a fact that is
very difficult to model in the two other approaches). But the price
to pay for this greater generality is, among others, the important
calculation time needed when one uses a fine grid and an impor-
tant number of different bubble sizes. Due to this difficulty, the
similar MUSIG approach developed in the CFX code, groups several
bubble sizes into the same velocity field, so diminishing the num-
ber of momentum equations to solve (e.g. Krepper et al., 2006).
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Appendix A. Modelling of the coalescence and break-up effects
in the different approaches

A.1. Single-size approach: model of Wu et al. (1998)

In this section, we summarize the model of Wu et al. (1998) for
the source terms due to coalescence and break-up Bþ=�0 and Cþ=�0

appearing in the RHS of Eq. (18). The bubble break-up is assumed
to be due to the impact of bubbles with the liquid turbulent eddies.
The bubble break-up source and sink terms are modelled together
in a single source term:

B0¼̂Bþ0 � B�0 ¼ CTI exp �Wecr
We

�  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Wecr

We

q
n

d32
ðeLd32Þ1=3 with :

We¼̂ qLe
2=3
L d5=3

32
r ; Wecr ¼ 2; CTI ¼ 0:18

ðA:1Þ

where We and Wecr are the Weber number and its critical value
(bubble break-up occurs only if We > Wecr). The coefficient CTI is a
fitted constant, qL and r are the liquid density and the surface ten-
sion, respectively, and eL is the mean turbulent dissipation rate in
the liquid, which is given by the solution of a liquid K–e model in
our work.

The coalescence terms are supposed to result from two different
collision sources. The first one are the random collisions due to the
entrainment of bubbles by liquid turbulent eddies, these eddies
having approximately the same size than the bubbles. The second
source of bubble collisions is by wake entrainment, when a bubble
is entrapped into the wake of a preceding bubble. Denoting by RC
the bubble coalescence due to random collisions and by WE the
bubble coalescence due to wake entrainment, we can write:

C0¼̂Cþ0 � C�0 ¼ �C0;RC � C0;WE ðA:2Þ

The authors modelled these two sinks of bubbles caused by coa-
lescence by the following relations:

C0;RC ¼ CRCðeLd32Þ1=3n2d2
32

a1=3
maxða

1=3
max�a1=3Þ

1� exp �C a1=3
maxa

1=3

a1=3
max�a1=3

� �
 �
with :

CRC ¼ 0:0565; C ¼ 3; amax ¼ 0:65
ðA:3Þ

where CRC and C are two fitted constants, a is the void fraction and
amax is the dense packing limit of the void fraction. For spherical
bubbles stacked in a hexagonal close-packed structure, amax is equal
to 0.65 and the model (A.3) is valid only for a < amax (the coales-
cence rate approaches infinity when a approaches amax). The coa-
lescence rate due to wake entrainment is given by the following
relation:

C0;WE ¼ CWEd2
32n2urðd32Þ with :

CWE ¼ 0:151; urðd32Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3
jqL�qG jgd32

qLCD

q ðA:4Þ

where CWE is a fitted constant and ur(d32) is the terminal velocity of
a bubble having a diameter d32, obtained by matching the weight
and Archimedes forces exerted on the bubble to the bubble drag
force, CD being the drag coefficient.

A.2. Coalescence modelling in the context of the log–normal law

Here we summarize the coalescence model derived by Kamp
et al. (2001) when the bubble diameter distribution function is
modelled by a log–normal law. The break-up integrals diverge
using such a distribution function (Riou, 2003). The coalescence
terms appearing in Eqs. (24) for the two particular moments S1

and S2 read:

C1¼̂Cþ1 � C�1 ¼ KC

ffiffiffiffi
8p
3

q
6a
p

� 2=3 Cte
1=3
Lffiffiffiffiffiffiffi

1:61
p ð21=3 � 2ÞS4=3

1 Fð1; r̂; P00Þ

C2¼̂Cþ2 � C�2 ¼ KC

ffiffiffiffi
8p
3

q
6a
p

� 1=3 Cte
1=3
Lffiffiffiffiffiffiffi

1:61
p ð22=3 � 2ÞS5=3

2 Fð2; r̂; P00Þ
ðA:5Þ

In these equations, KC is a fitted constant equal to 1, the coeffi-
cient Ct is the ratio between the dispersed phase velocity fluctua-
tions and the continuous phase velocity fluctuations, eL is the
mean liquid turbulent dissipation rate which is given here by the
solution of a K–e model used for the liquid phase, Fð1; r̂; P00Þ and
Fð2; r̂; P00Þ are power law functions of the width parameter r̂
and P00. The quantity P00 is the coalescence probability of two bub-
bles having the diameter d00. All the details are given in the paper
from Kamp et al. (2001).

A.3. Coalescence and break-up modelling in the context of the
quadratic law

In the context of the moments method using the quadratic law
(25) for the bubble diameter distribution function, the IAC balance
equation (15)3 must be solved in order to close the system. The
coalescence and break-up terms appearing in this equation can
be rewritten (Ruyer, 2008):

pðBþ2 � B�2 þ Cþ2 � C�2 Þ ¼
Z Z p

2
½ðd3

1 þ d3
2Þ

2=3 � d2
1 � d2

2�fcoalðd1;d2Þ

dd1dd2 þ
Z

pð21=3 � 1Þd2fbreak-upðdÞdd

ðA:6Þ

where fcoal(d1,d2) and fbreak-up(d) are coalescence and break-up fre-
quencies. The modelled expression for the IAC source terms by coa-
lescence reads:
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pðCþ2 � C�2 Þ ¼ a5=3
i e1=3

L a1=3nðNcÞ
with nðNcÞ ¼ �0:18ð1þ 0:341Nc þ 0:199N2

c Þ expð�0:561NcÞ

and Nc ¼̂ 8:06 a
ai

� 	5=6
e1=3

L

ffiffiffiffi
qL
r

q
ðA:7Þ

The break-up term is derived from the original model from Wu
et al. (1998) rewritten in the context of the quadratic law for the
bubble size distribution. The source term in the IAC balance equa-
tion reads:

pðBþ2 � B�2 Þ ¼ 3:01 aqLeL
rWecr

eX�1eX 2
exp � 2eX

� � ffiffiffiffiffiffiffiffiffiffiffiffi
1� 1eXq

with eX¼̂ 2d10
dcr

� 	5=3
where dcr ¼̂ rWecr

qLe
2=3
L

� �3=5

and Wecr ¼ 2

ðA:8Þ

In these relations, dcr denotes the critical bubble diameter cor-
responding to the critical Weber number. Bubbles having their
diameter smaller than dcr do not break-up, hence the model (A.8)
must be used only for eX values larger than 1.

A.4. Coalescence and break-up modelling in the context of the multi-
field model

Here we must propose some closure relations for the inter-class
mass transfer terms Bþi ; B�i ; Cþi and C�i appearing in the mass
balance equation (42). We have adapted the discrete expressions
proposed by Carrica et al. (1999) into the following form:

Bþi ¼
PN

j¼iþ1
bjag;jqg;jXi;j

B�i ¼ biag;iqg;i

Cþi ¼
qg;i

2

Pi�1

j¼1
cj;i�jag;jag;i�jXi;j;i�j

C�i ¼ qg;i

PN�i

j¼1
ci;jag;iag;j

ðA:9Þ

where ag,i and qg,i are the void fraction and the density characteriz-
ing the bubble class i, bi and ci,j are break-up and coalescence frequen-
cies and Xi,j and Xi,j,k are non-dimensional matrices guaranteeing
that the coalescence and break-up do not change the total amount
of gas according to Carrica et al. (1999). These authors proposed
some expressions for the matrices Xi,j and Xi,j,k but in fact, we do
not need to retain exactly their expressions, as it will be shown.
The total void fraction conservation by the coalescence and break-
up phenomena reads:XN

i¼1

XN

j¼iþ1

bjag;jqgXi;j � biag;iqg þ
qg

2

Xi�1

j¼1

cj;i�jag;jag;i�jXi;j;i�j

 

� qg

XN�i

j¼1

ci;jag;iag;j

!
¼ 0 ðA:10Þ

It has been assumed that the gas density is the same for all the
bubble classes. Eq. (A.10) is simply obtained by summing
Bþi � B�i þ Cþi � C�i on the N classes. Eq. (A.10) thus guarantees that
the coalescence and break-up terms disappear when summing the
mass balance equations (34) for the N classes, in order to obtain the
total gas mass balance equation (37). As coalescence and break-up
are two separate (independent) phenomena, each of them must
verify (A.10) independently of the other. Let us first examine the
consequence of (A.10) for the coalescence terms. Developing the
sums in the last two terms of (A.10) and assuming that the their
sum on the N classes should cancel for each value of ci,j indepen-
dently, we obtain the following conditions for the first few classes:
X2;1;1 ¼ X4;2;2 ¼ 2
X3;1;2 þ X3;2;1 ¼ 4
X4;1;3 þ X4;3;1 ¼ 4
. . .

ðA:11Þ

A mathematical induction shows that it is sufficient to make the
following choice:

Xi;j;i�j ¼ 2 8i; j ðA:12Þ

to guarantee the total gas mass conservation by the coalescence
phenomenon.

Reasoning in the same manner on the break-up phenomenon,
i.e. supposing that the break-up terms in (A.10) should sum to zero
for each frequency bi independently, we obtain for the first few
classes:

b1 ¼ 0
b2a2ðX12 � 1Þ ¼ 0
b3a3ðX13 þ X23 � 1Þ ¼ 0
b4a4ðX14 þ X24 þ X34 � 1Þ ¼ 0
. . .

ðA:13Þ

Mathematical induction shows that this is equivalent to
impose:Xi�1

j¼1

Xj;i ¼ 1 i ¼ 2;N and b1 ¼ 0 ðA:14Þ

For the NEPTUNE_CFD code implementation, however, we do
not need to verify Eq. (A.14) (except for b1 = 0 which expresses that
the bubbles in the smallest diameter class are not allowed to
break-up), because the algorithm for the inter-class mass transfers
automatically guarantees the total mass conservation. This is sim-
ply done by considering the gas fields by pairs and, for each mass
exchange between two bubble classes, to impose that the mass
source in one of the two bubble classes is exactly equal to the mass
sink in the other one. Therefore we keep a freedom degree on the
expression of the matrix Xi,j. Several expressions have been tested
and we have retained the one giving the smoothest bubble diame-
ter distribution function. This expression reads:

Xi;j ¼ v i=v j ðA:15Þ

where vj and vi are the volumes of the parent bubble and the daugh-
ter bubble, respectively. Despite the fact that (A.15) gives a value of
Xi,j that is smaller than 1, it does not respect Eq. (A.14) but, as it has
been explained, this does not influence the total gas mass conserva-
tion in the NEPTUNE_CFD code due to the particular algorithm used
for the mass exchanges between different phases or fields. Retain-
ing the value given by (A.12) for the coalescence matrix into the
model (A.9) and comparing this model to the general algorithm
for mass exchanges between two phases in NEPTUNE_CFD, the
implemented mass exchange term for coalescence and break-up
reads:

TSi;j ¼ bjajqgXi;j � qgci;j�iþ1aiaj�iþ1 i ¼ 2;N and

j ¼ iþ 1;N þ 1 ðA:16Þ

where TSi,j is the mass exchange term between phases i and j, direc-
ted from j towards i when it is positive. The shift of the indices is
due to the fact that the phase 1 is occupied by the liquid, therefore
the N gas fields are numbered from 2 to N + 1.

Now, we must give some closed expressions for the coalescence
and break-up frequencies. According to Prince and Blanch (1990),
the coalescence rate between a first bubble population having a
diameter di and characterized by a bubble number density ni, with
a second bubble population having a diameter dj and characterized
by a bubble number density nj is given by the following equation:
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@ni

@t

����
coal
¼ �ninjSijV

c
ijg

c
ij ðA:17Þ

where Sij is the collision cross-sectional area of bubbles, Vc
ij is the

collision velocity and gc
ij is the coalescence efficiency. Introducing

ag,i = nivi and ag,j = njvj where vi and vj denote the volumes of the
two bubble classes considered, Eq. (A.17) can be rewritten as:

@ag;iqg

@t

����
coal
¼ �qg

ag;iag;j

v j
SijV

c
ijg

c
ij ðA:18Þ

Shifting the phase index as previously mentioned (ag,i�1 = ai),
and comparing (A.18) to (A.16), the mass transfer term between
the fields i and j due to coalescence reads:

TSi;j ¼ �qgci;j�iþ1aiaj�iþ1 ¼ �qg
aiaj�iþ1

v j�iþ1
Si;j�iþ1Vc

i;j�iþ1g
c
i;j�iþ1 ðA:19Þ

from which the coalescence frequency between the two bubble
classes i and (j � i + 1) is deduced:

ci;j�iþ1 ¼
Si;j�iþ1

v j�iþ1
Vc

i;j�iþ1g
c
i;j�iþ1 ðA:20Þ

Hence, the coalescence terms in Eq. (42) are completely close if
one adopts some expressions for the three quantities Si;j�iþ1;

Vc
i;j�iþ1 and gc

i;j�iþ1. Several expressions are available in the litera-
ture for these quantities. Here, these quantities were modelled
according to Wu et al. (1998) for the two possible sources of coa-
lescence: by random collisions (RC) and by wake entrainment
(WE).

The same kind of reasoning leads to the following expression for
the break-up frequency of a bubble belonging to the class j:

bj ¼
gb

j

tb
j

ðA:21Þ

where gb
j and tb

j denote a break-up efficiency and a characteristic
time for bubble break-up, respectively. Several expressions are
available in the literature for these quantities. Here we have re-
tained the expressions similar to those of Wu et al. (1998) for bub-
ble break-up due to turbulent impact (TI).

Appendix B. Brief description of the K–e model for bubbly flows

The Reynolds stress tensor for the liquid phase is assumed to be
given by the usual closure relation (e.g. Schiestel, 1993):

sT
Lij
¼ qLm

T
L ðVLi;j

þ VLj;i
Þ � 2

3
dijðqLKL þ qLm

T
L VLl;l
Þ ðB:1Þ

In this relation, mT
L is the turbulent eddy viscosity, which is also

assumed to be given by the ‘‘single-phase” closure relation:

mT
L ¼ Cl

K2
L

eL
ðB:2Þ

where Cl is a model constant equal to 0.09. The liquid turbulent ki-
netic energy KL and its dissipation rate eL are calculated by their
‘‘two-phase” transport equations:

@ð1� aÞqLKL

@t
þr:½ð1� aÞqLKLVL�

¼ r: ð1� aÞqL
mT

L

rK
rKL


 �
� ð1� aÞsT

L : rVL � ð1� aÞqLeL þ Pi
K

ðB:3Þ

@ð1� aÞqLeL

@t
þr:½ð1� aÞqLeLVL�

¼ r: ð1� aÞqL
mT

L

re
reL


 �
� Ce1

eL

KL
ð1� aÞsT

L : rVL

� Ce2ð1� aÞqL
e2

L

KL
� 2

3
ð1� aÞqLeLr:VL þ Pi

e ðB:4Þ
The exact counterpart of the modelled equations (B.3) and (B.4)
have been derived in a previous paper (Morel, 1995). An order of
magnitude analysis of these exact equations followed by a compar-
ison to several experimental bubbly flows allowed us to greatly
simplify these balance equations. At the end, we arrived to the sim-
plified equations (B.3) and (B.4) where the terms Pi

K and Pi
e repre-

sent the remaining interfacial interaction terms in the K and e
equations, respectively. Therefore, even if the closure relations for
the Reynolds stress tensor (B.1) and for the eddy viscosity (B.2)
are ‘‘single-phase” relations, the two-phase aspects due to the pres-
ence of the bubbles are taken into account in two different manners.
First, the liquid does not occupy the total space of the flow domain
because it must share this space with the second gaseous phase.
This is taken into account by the presence of the liquid fraction of
presence (1 � a) in the different terms of Eqs. (B.3) and (B.4). Sec-
ond, the two terms Pi

K and Pi
e take into account the liquid turbulence

modulation by the bubbles. For this second aspect, a very simple
model has been adopted. The term Pi

K is supposed to be a source
of liquid turbulent kinetic energy due to the turbulent wakes be-
hind the bubbles in their relative movement. It is modelled by the
power developed by the averaged drag force in the relative velocity:

Pi
K ¼ �MD

G :ðVG � VLÞ ðB:5Þ

After being produced, this additional turbulent kinetic energy is
dissipated through the term Pi

e in the liquid dissipation rate bal-
ance equation. This additional dissipation is assumed to be charac-
terized by a time s constructed with the averaged liquid
dissipation rate and the Sauter mean bubble diameter:

Pi
e ¼ Ce3

Pi
K

s
s ¼ d2

32

eL

 !1=3

ðB:6Þ
Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ijmultiphaseflow.2009.09.003.
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